
Machine-o-Matic: a Programming Environment
for Prototyping Digital Fabrication Workflows
Jasper Tran O’Leary
University of Washington, Seattle, WA, USA
jaspero@uw.edu

Nadya Peek
University of Washington, Seattle, WA, USA
nadya@uw.edu

Abstract
Digital fabrication tools for Makers have increased access to manufacturing processes such as 3D
printing and computer-controlled laser cutting or milling. However, these machines and their
associated software tools are difficult to modify and adapt beyond common case tasks. How can we
enable Makers to design and operate machines with other applications? To facilitate custom machine
design and control, we propose a domain-specific language for formalizing fabrication workflows
as programs. This language, called Machine-o-Matic, provides an interface for authoring workflow
and for defining machine configurations in software. Programs in the language compile to custom
firmware for controlling physical machines. We demonstrate key features of Machine-o-Matic and
highlight the future possibilities for verifiable fabrication using a programming languages approach.

2012 ACM Subject Classification Human-centered computing → Interactive systems and tools;
Applied computing → Computer-aided manufacturing; Software and its engineering → Domain
specific languages

Keywords and phrases Digital fabrication, programming languages, user interfaces, prototyping

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.23

1 Introduction

At a global scale, the rise of the Maker movement and academic makerspaces has engaged
more people in using digital fabrication tools than ever before. Tools for digital fabrication
include CNC machines, which we use to to refer to any computer-controlled machine that
users can program through computer software. Common examples of CNC machines include
general-purpose machines such as laser cutters, 3D printers, and CNC mills, as well as
machines for niche use cases. In addition to physical CNC machines, there is a growing
ecosystem of open-source software tools to support specific parts of the fabrication pipeline,
for example: optimizing 3D model meshes for fabrication [8], slicing 3D model meshes into
toolpaths [2], and designing printed circuit boards [1]. With the increased availability of
affordable CNC machines comes the promise of diverse applications of digital fabrication,
where individuals who are not expert machine users can adapt CNC machines and software
to their own workflows.

1.1 Workflow: a Fabrication Task Made up of Digital and Physical
Steps

Let us define a workflow as going from a concept, through various stages of design and
physical fabrication, to a completed prototype for product. Any digital fabrication workflow
will incorporate various machines, materials, software tools, hardware modifications, file
types, etc. that are strung together. For example, a workflow for something as simple
as 3D printing a metal figurine, a model is made in CAD, exported as an STL, sliced in

© Jasper Tran O’Leary and Nadya Peek;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1825-0097
mailto:jaspero@uw.edu
mailto:nadya@uw.edu
https://doi.org/10.4230/OASIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

23:2 Machine-o-Matic

Figure 1 Example Workflow. A user positions sheet material in a plotter’s work envelope (1) and
images the material to extract a QR code (2). They then look up the code in a database to retrieve
an annotation for the given sheet (3). Finally, they create a toolpath for drawing the annotation (4)
and generate G-Code using quasiquoted variable values for moving the machine (5).

a printer-specific slicer, exported as G-code, transferred to the machine, interpreted by
controllers into motor moves of a motion platform and extrusion head, removed from the
bed of the printer, sintered in an oven according to the material’s temperature specs, then
cleaned and polished for final use. Other applications will require a different assembly of
steps in software, hardware, and material handling.

However, digital fabrication infrastructure is static—difficult to modify and adapt. There is
no formalization for connecting different parts of a workflow. At the machine level, modifying
CNC machine typically involves reprogramming controller boards that are hard-wired to
support machine controls for engineering use cases. Even for users with technical expertise
in machine building, modifying controllers to change kinematics, or to add functionality, is
“hacky” and involves rewriting firmware. With software tools, it can be difficult to reason
about inputs and outputs for different parts of the pipeline. For example, a user who is 3D
printing will often need to tinker with the 3D model’s design, the conversion of the model to
a mesh, the slicing of that model, and the machine instructions (G-Code) generated from
the slices—all at the same time. This static infrastructure poses a prohibitively high barrier
to a diverse set of users who need to do tasks not commonly supported by software tools,
but who do not have prior technical background in fabrication.

In particular, there are few, if any, ways to formally verify that output from one part of
the workflow will work as input for another part of the workflow; for example, ensuring that
a GCode file will not cause a spindle to exit the work envelope, or ensuring that a 3D printer
extruder never revisits a place with material already deposited. Even if we implemented
these simple safety checks ad-hoc, they might not cover other workflows that are developed
by different users in the future. With current tools, if the user has modified the printer, or
wishes to generate machine instructions from sources besides a 3D model, they must tinker
with machine instructions, export parameters, and model data all at once. All too often,
the solution to these issues is for users to “just know” if and when hacks to machines and
software tools will work.

1.2 Reimagining Fabrication Workflows as Formal Programs
In this paper, we define users as people who are using digital fabrication machines and
software in hobbyist, academic, or professional contexts besides mass manufacturing settings.
These users may wish to apply the precision of fabrication machines in contexts such as art,

J. Tran O’Leary and N. Peek 23:3

biology laboratory work, cooking, packaging, and many others. We envision these users as
tinkerers who are comfortable designing for themselves and with learning and using software.
However these users need not be comfortable with understanding or designing machines, or
with established practices for fabrication workflows.

We now ask: what are the needs of these new fabrication practitioners? What are the
tools that can meet these needs? We hypothesize that it is not making mass-manufacturing
machines more efficient, but developing novel machines and ways of interacting with those
machines. These machines and their workflows need to be robust, reliable, reconfigurable,
and easy to learn.

Rather than proceed with further optimizations to static fabrication infrastructure, we
envision fundamentally changing how people create fabrication workflows. We propose
representing fabrication workflows as programs, where machines, materials, data, and controls
are all first-class citizens in an interactive programming environment. To facilitate
programming, modifying, and controlling parts of the workflow, we propose developing
Machine-o-Matic: a domain-specific programming language for integrating disparate tools
into a cohesive setting. Critically, users would be able to define machines in software based
on the criteria they need, adding in sensors, data, and other features within the context of a
programming environment that affords static checking, programming by example, etc. The
language, Machine-o-Matic, would be embedded within Javascript to enable users to use
Machine-o-Matic’s features alongside existing capabilities of the popular language.

2 System Architecture

Machine-o-Matic comprises three parts (see Figure 2):

Machine-o-Matic Language: a domain-specific language for formally describing a
machine configuration of motors, sensors, tools, and instrumentation, as well as support for
debugging and verifying machine behavior before runtime. The DSL would be embedded
within a larger host language such as Javascript so that users can take advantage of
general purpose computation and data processing that the host language affords.
Controller Firmware Compilation: a means of compiling machine configurations in
the DSL into firmware to upload to the machine’s control board. This firmware translates
movement commands into physical motor pulses for the given machine configuration.
Graphical Front End: a browser-based visual tool for quickly assembling and simulating
machines, for synthesizing parts of programs in the DSL using graphical techniques, and
for inspecting and visualizing stages of the workflow.

Machine-o-Matic Language
To conceptualize how a machine configuration would be represented in the Machine-o-Matic
language, we use a concrete example of a CNC plotter (see Figure 2 for a visual representation
of a plotter) instrumented with a web camera to label sheet material in an specified location.
Our example workflow, illustrated in Figure 1 is as follows:

1. Place a sheet of material with a QR code sticker on it in the plotter’s work envelope.
2. Use a web camera mounted above the plotter to image the material.
3. Read the QR code and look up the appropriate annotation for the current sheet of

material.
4. Create a toolpath for writing the annotation with the machine’s writing tool.

CVIT 2016

23:4 Machine-o-Matic

Figure 2 Machine-o-Matic System Architecture. A user programs a machine configuration in the
DSL. Code in the DSL corresponds to physical implementation. The system compiles the configuration
to controller firmware which then actuates the physical machine.

Listing 1 Defining a machine configuration in the DSL
let plotter : Machine = new Machine ({

" linear Axis(x)" : " Motor (x1), Motor (x2) @ step -> 0.03048 mm",
" linear Axis(y)" : " Motor (y) @ step -> ??? mm",
" binary ToolUpDown " : " Motor (t)",

});

5. Position the writing tool 100mm to the right of the sticker and plot the annotation onto
the sheet.

In the Machine-o-Matic DSL, the user first defines a machine configuration as shown in
Listing 2. With this code, the user defines a plotter machine configuration as the variable
plotter. To instantiate the machine, the user provides information about the machine’s
motors, for example "linear Axis(x)" : "Motor(x1), Motor(x2) @ step -> 0.03048
mm". This statement indicates that there are two motors named x1 and x2 which will move
in parallel to drive the plotter’s toolhead along the x-axis. The machine configuration will
eventually be used to generate controller board firmware, so the user must indicate how
many millimeters of displacement result from one step of the motor (step -> 0.03048 mm)
to aid with kinematic calculations. If the user does not know this information, they can leave
a hole in the program (???) and the system will probe the motor’s movement at runtime,
prompt the user to measure the displacement, and synthesize a correct replacement to the
hole based on empirical measurement. The user also declares a non-axis degree of freedom
ToolUpDown, which simply uses two positions on the motor named t to extend and retract
the writing instrument.

Listing 2 Declaring objects for sensor input, material data, and computer-aided manufacturing
(CAM)
let camera : WebCamera = new WebCamera ({

port: "/ dev/tty. usbserial1402 "
});
plotter . addSensor (camera);
let materialTable : Table = loadTableFromDatabase ();
let profileCAM : CAM = new CAM ({ pathType : " profile " });

J. Tran O'Leary and N. Peek 23:5

Listing 3 De�ning a machine action that can be called during runtime

plotter . act ion (" locateAndPlotAnnotat ion ", () => {
let image : Image = camera . readImage ();
let annotat ionPoint : Vector3 = image . f indQRPoint ()

. t ranslateX (100);
let annotat ionForSheet : Str ing = mater ialTable

. query (image . decodeQR ());
let toolpath : Toolpath = prof i leCAM

. generateToolpath (annotat ionForSheet);

this . moveTo (annotat ionPoint);
this . ToolUpDown .down ();
this . plot (toolpath);
this . ToolUpDown .up ();

});

In addition to de�ning a machine con�guration in software, the user can add and integrate
sources of data. In Listing 2, the user declares a variablecamera as an interface to a web
camera mounted above the plotter, and connects that as a sensor to the plotter. The
user also imports a database that maps the QR codes on the stickers to the appropriate
text to be plotted on the corresponding sheet of material. They then instantiate aCAM, or
computer-aided manufacturing object to transform text into movement paths for the plotter.
Each of these variables is declared with a type, for examplelet toolpath : Toolpath ,
which a�ords static type checking at compile time.

Next, as shown in Listing 2 the user de�nes anaction, locateAndPlotAnnotation that
the machine can perform. The machine can perform actions at any time, similar to calling a
function in software. Critically, this action integrates image data, database lookups, toolpath
generation, and custom motor movements within a single function call.

In the above code, the machine images the material sheet and processes image data.
Using the data, the machine (this) moves the tool to the correct location, actuates the
motor to lower the writing tool, plots the toolpath, and re-raises the tool. For every step,
the language employs a type system to check for common compile-time errors.

Using a programming language exposes formerly black boxed tools, grants machines open
access to data, and allows users to verify high-level constraints before machines begin running,
all in a clear syntax that can easily be shared and modi�ed. Critically, a language allows
us to use standard program analysis techniques to verify the behavior of the work�ow. For
example, we can check to make sure the machine instructions produced are compatible with
the machine that will run them. We can also enforce invariants such as requiring that the
tool never be moved outside the machine's work envelope, or that all machine instructions
generated from a data source contain no null values. Finally, Machine-o-Matic provides a
graphical front end for composing programs in the language, including designing machine
con�gurations (see Figure 3, left) and visualizing stages of the work�ow (see Figure 3, right).

Controller Firmware Compilation

CNC machines have controller boards that translate machine instructions such as GCode
into electrical pulses that actuate the motors and move the tool head. Typically, machine
kinematics are �baked in� the physical controller board and are di�cult to modify. Seemingly
simple modi�cations like adding another motor or adding another machine instruction usually

CVIT 2016

	Introduction
	Workflow: a Fabrication Task Made up of Digital and Physical Steps
	Reimagining Fabrication Workflows as Formal Programs

	System Architecture
	Related Work
	Component-Based Design
	Programming Language Techniques for Fabrication

	Next Steps and Open Questions
	Conclusion

